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Al is a Game Changing Opportunity
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Machine Learning Requires
Collaborative Experimentation on Big Data
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New applications or better applications?
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How to exploit data at low cost, low risk and
maximum benefit!
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Hardest Part of Al isn’t Al, it’s the data
“Hidden Technical Debt in Machine Learning Systems,” Google NIPS 2015
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Only a small fraction of real-world ML systems is composed of the ML code, as shown by the
small blue box in the middle. The required surrounding infrastructure is vast and complex.
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Apache Spark Philosophy

Applications
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data applications
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New applications
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An Analogy ....
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An example:
[dentitying Vehicles in

Aerial Imagery
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vehicle_classes = {
18:('car', 'red’),
23:('truck’, 'orange'),
19:('bus', 'white', 0.0)}
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@ databricks

vehicle_classes ={
18:("car', 'red),
23:('truck’, 'orange'),
19:('bus', 'white', 0.0)
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Apache Spark - the glue of big data

One framework to bind all these libraries together

- Atscale
- Allows pipelining
- Easily move data
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High-level View of the Pipeline
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Parsing Image Data
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Deep Learning

1] )

+ —)

map data XML
metadata

[ |[=

Analyze and
Visualize

#databricks

park

N

S S
RSN

7]

b

DB HAR
e \W
RSN

2> 7

Transfer Learning with
Deep Learning Pipelines

Geospatial Analytics

14



Geospatial Analytics with Magellan
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Demo
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Childsplay with SprJ\z & databricks

* Aliseasy with the right tools
* Bigdata emerges from combining smaller datasets
« Easyintegration between existing tools and Apache Spark

atabricks
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Thank you
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